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Abstract. The thorough evaluation of optimization algorithms and software demands devo-
tion, time, (code development and hardware) resources, in addition to professional objectivity.
This general remark is particularly valid with respect to global optimization (GO) software
since GO literally encompasses ‘‘all’’ mathematical programming models. It is easy not only to

fabricate very challenging test problems, but also to find realistic GO problems that pose a
formidable task for any algorithm of today and of tomorrow.
A report on computational experiments should ideally cover a large number of aspects: a

detailed description and practical background of the models; earlier related work; solution
approaches; algorithm implementations and their parameterization; hardware platforms,
operating systems, and software environments; an exact description of all performance mea-

sures; report of successes and failures; analysis of solver parameterization effects; statistical
characteristics for randomized problem-classes; and a summary of results (in text, tabular and/
or graphical forms).

An extensive inventory of classical NLP and GO test problems, as well as more recent (and
often much harder) test suites have been suggested. This paper reviews several prominent test
collections, discusses comparison issues, and presents illustrative numerical results. A second
paper will perform a comparative study using ideas presented here, drawing also on discus-

sions at the Stochastic Global Optimization Workshop (held in New Zealand, June 2001).

Key words: Analysis and comparison of algorithms and software, Global optimization, Test
problems and applications

1. Introduction

One of the very first questions to consider in formulating and solving a
quantitative decision model is: what optimization approach and – eventually
– software should be used? Ideally, we want to choose the method that
would be most suitable for solving the problem at hand. The word ‘‘suitable’’
can reflect and imply different interests for different users. For instance, one
practitioner may emphasize the speed of the algorithm to find a ‘‘good’’
solution, even though the solution found is not guaranteed to be the
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optimum. Another expert may give more attention to rigorous guarantees
and to the accuracy of the solution obtained by the algorithm, and so on.
Numerical experiments to compare algorithms and software is an impor-

tant area complementing the theoretical analysis of optimization methods,
since there is not a single universal algorithm that performs ‘‘best’’ for all
possible categories of optimization problems and instances. In this paper,
we will discuss computational testing issues related to comparing global
optimization (GO) strategies and solvers.
Modern optimization algorithms typically utilize iterative techniques.

These algorithms, in combination with recent advances in computer tech-
nology, allow practitioners to address large-scale and/or complex problems
that could not have been solved otherwise.
It may be beneficial to first reflect on a definition of what constitutes an

algorithm. Kronsjö [23] defines an algorithm as ‘‘a procedure consisting of
a finite set of unambiguous rules which specify a finite sequence of opera-
tions that provides the solution to a problem, or to a specific class of prob-
lems.’’ This definition reveals several key attributes that are worthwhile
emphasizing.

� An algorithm must be rigorously and precisely defined, to eliminate
ambiguity.
� An algorithm must provide a solution (even if not the best possible) to
the problem, after a finite number of computational steps such as
model function evaluations, and/or after a reasonable amount of time
specified by the user. If there is simply no acceptable solution, then
such cases need to be handled properly.
� An algorithm must be applicable to entire classes of problems, rather
than just to a particular problem instance.

This list of main points is in general agreement with the suggestions by
Arora [2, 3] and Bazaraa et al. [4] on the attributes of a good numerical
optimization method. More specifically, they propose that a good algo-
rithm has the following attributes:

� Generality. The algorithm should be insensitive to secondary details of
the problem structure; that is, the algorithm should converge to a solu-
tion without any further restrictions on the structure of the problem
instance (assuming, of course, that the given problem belongs to the
scope of the algorithm).
� Efficiency. The algorithm should (i) keep the amount of calculations as
small as possible so that the actual computation time is ‘‘minimal’’, or
at least acceptable; (ii) require relatively few iterations and thus con-
verge quickly; and (iii) be relatively insensitive to the initial starting
point and other specifications.
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� Reliability. The algorithm should be reliable and solve the given
problem to a reasonable degree of accuracy specified by the user.

� Ease of Use. The application of the algorithm – at least with its default
settings – should be relatively easy to understand, even by novice or
less experienced users. The algorithm should have as few parameters
that require explicit ‘‘tuning’’ as possible.

The attributes listed above are interrelated. For example, algorithms that
are very sensitive to the selection of the tuning parameters are often prob-
lem dependent, and hence not sufficiently general. Furthermore, tradeoffs
between these attributes are usually inevitable. When robustness and ease
of use increase, efficiency typically decreases to some extent, and vice versa.
That is, often a computational ‘‘price’’ (such as CPU time increase) has to
be paid in order to obtain a robust and easy to use algorithm [50]. At the
same time, an algorithm tailored to a specific class of problems with com-
mon structure is frequently more efficient for that particular problem class
than an algorithm that could be applied to a more general class of prob-
lems, but a lot less efficient – or even unusable – when applied to problems
outside that class. Thus, there certainly are tradeoffs between generality,
efficiency, trustworthiness, and ease of use. For additional related discus-
sions in the GO context, please consult Neumaier [34] and Pintér [39].

2. A Review of Comparative Characteristics

Once an algorithm is developed, the next phase is to demonstrate that it
can be implemented in a practically usable form. This section discusses
how researchers have been appraising the ‘‘goodness’’ of computational
optimization algorithms.
In a fair comparison of optimization algorithms, there are many aspects

that need to be addressed. The first and probably the most important issue
is the selection of objective, empirical, and reproducible measures of merit.

2.1. MEASURES OF MERIT

Based on the key attributes of a good optimization algorithm as discussed
above, below we propose guidelines for merit measures reflected by the fol-
lowing points.

2.1.1. Generality

Model size. The complexity of algorithms is usually interpreted in relation
to the size of the problems considered: the size is determined (as a first
approximation) by the number of model variables and constraints. In gen-
eral, as the model becomes larger, algorithms take a longer time to solve
them; furthermore, it often is the case that once the model dimension or
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the number of constraints reaches a certain algorithm-specific level, in
practice the algorithm can no longer solve them on the given hardware
platform [23]. A simple explanation of this experience is that the computa-
tional burden and the memory storage requirements, especially for GO
problems, can dramatically increase with growing model size [52].
Although global optimization problems are known to be NP-complete [53],
the hope is that practitioners will be able to address even sizeable GO
problems in some efficient manner.
In order to acquire practical solutions to large dimensional global optimi-

zation problems – in addition to rigorous deterministic approaches – heuris-
tic and stochastic methods are also considered. Such general approaches
that have been successfully applied to other difficult problem types, such as
combinatorial optimization, can often be adapted to continuous GO mod-
els. Measures such as the absolute or relative deviation from the optimum
value (known in many test examples) that proved to be useful in evaluating
integer programming methods can also be applied in the GO context.
Configurations of local minima. The number, location, region of attraction,
and value of local solutions can all significantly affect the performance of
GO algorithms. Problems with relatively few local minima are expected to
be easier to solve than problems with many local minima. The spatial distri-
bution of local solutions may also influence algorithm performance. If the
local minima are concentrated in only a few areas on the feasible region,
then the detection of one local minimum may easily lead to finding other
local minima, whereas if the local minima are all scattered throughout the
feasible region, then it can be far more difficult to find the global one. Fur-
thermore, if the global optimum has a relatively small region of attraction,
and/or there are several nearly identical (good quality) solutions, then these
circumstances can make the solution procedure far more difficult.
Törn et al. [51] discuss the impact of distribution of minima on algo-

rithm performance. The phrase embedded global minimum is used to
describe the situation when the global minimum is close to some other
local minimizers. Detecting these local minima often leads the algorithm to
also detect the global minimum. The opposite situation is termed isolated
global minimum: purely local search techniques can be rightfully expected
to perform more poorly in the latter case.

2.1.2. Efficiency

Computational time, normally reported as net program execution time or
CPU time, is an important indicator that shows how an algorithm per-
forms on a specific problem. However, as Kronsjö [23] and numerous oth-
ers caution, the execution time of an algorithm can be greatly affected both
by programming/implementation skills and by the hardware used. Skillful
coding may not basically alter the underlying core algorithm, but it can
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significantly influence the speed of program execution. Moreover, execution
times of any two algorithms are not directly comparable when done on
machines with different specifications.
With this in mind, it is often suggested that instead of reporting execu-

tion time one should report the number of model function evaluations
needed by the algorithm to numerically converge to the optimum within a
given degree of accuracy. Note however, that the number of the objective
function evaluations also could depend on programming skills. Some algo-
rithms may also have other computational requirements (such as finding
the inverse of the Hessian matrix) that are not captured by solely counting
direct function evaluations. Therefore, a joint report combining both exe-
cution time (relative to some widely accepted benchmark operation) and
the number of function evaluations is perhaps a better approach.
So far we have discussed the time complexity of an algorithm, i.e. the time

required to execute the algorithm. There are two other types of complexity
that should also be considered, namely space complexity and computational
complexity. Space complexity is the memory required by an algorithm to
complete the entire execution. A smaller memory requirement is obviously
preferred to a large memory requirement. It is possible that certain methods
applied to high-dimensional problems imply huge memory requirements
that exceed the limitations of most, if not all, computers. Therefore space
complexity should be considered as a part of algorithm performance.
Computational complexity in practical terms refers to the number of

arithmetic or logical operations that an algorithm requires to solve a given
problem to a given precision. In numerical computations, algebraic and
analytic complexity (two branches of computational complexity) should be
distinguished. Algebraic complexity indicates a known bound on the num-
ber of arithmetic operations required by the algorithm to achieve the solu-
tion. This is not a practically usable measure in the case of GO problems,
because theoretical convergence typically needs an infinite number of
search points and function evaluations. By contrast, analytic complexity
focuses on how much computational effort is needed to yield a solution
within a certain degree of accuracy. Thus, in terms of computational com-
plexity, a better algorithm is the one requiring fewer arithmetic operations
to achieve a solution with a predetermined degree of accuracy.
There is also another type of complexity called theoretical complexity.

Commonly, theoretical complexity is categorized by theoretical properties
of convergence. For an algorithm to be rigorous, it must guarantee conver-
gence by generating a sequence of points that converges to the optimum.
Deterministic algorithms may have an absolute convergence property if they
sample a dense set: the sequence of solutions converges to the optimum for
arbitrary starting points [49]. Stochastic algorithms do not have absolute
convergence; instead, they converge in probability to the global solution set.
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The next issue to examine is theoretical convergence rate. It is usual to
consider the order or rate of convergence as the iteration index tends to
infinity, see Bazaraa et al. [4] or Brent [6]. This convergence concept
reflects the behavior of the tail of the sequence and hence it is a local prop-
erty. A higher order of convergence implies, at least in theory, greater
speed of convergence. In global optimization, however, we must consider
the entire convergence history, since algorithms may converge quickly at
the tail, but slowly at the beginning.
Deterministic algorithms may use time until reaching the target set as a

measure of speed of the overall algorithm, while stochastic algorithms may
use the expected number of iterations until first reaching the target set as a
similar analytical measure. Examples of analysis of stochastic algorithms
that use the expected number of iterations until first reaching the target set
are Pure Adaptive Search [55] and Hesitant Adaptive Search [7]. In con-
trast to the order of convergence (a local measure) the number of iterations
to reach a target set may be considered as a global measure of overall con-
vergence for the algorithm studied.

2.1.3. Reliability

The reliability or ‘‘trustworthiness’’ of an algorithm is often characterized
using both theoretical analysis and computational results. Exact determin-
istic GO methods [22, 33, 40], as a rule, provide guaranteed accuracy after
a finite number of iterations, but require a theoretically infinite number of
iterations for absolute convergence.
As mentioned earlier, stochastic global optimization algorithms guaran-

tee the convergence to the solution only in probability. This implies that
the results obtained in a finite number of iterations or a given time may
not be guaranteed to be near to the optimum; furthermore, such methods
can provide (at best) statistical bounds on the optimal value. Of course,
one needs to balance speed, e.g. execution time or number of function eval-
uations, against the degree of assurance regarding the results. In certain
cases and applications, strict solution guarantees are indispensable. In
many other situations, however, practicality dictates the acceptance of
good quality solutions obtained by a limited computational effort.
Törn and �Zilinskas [52] suggested a comparison by using the success ratio

s/m, where m is the total number of times that the algorithm, started from
random initial points, is applied to a GO problem, and s is the number of
cases in which the algorithm successfully finds the global optimum. Based
on this concept, careful numerical experiments can be conducted and a
quantitative comparison can be drawn among probabilistic algorithms.
Note that solution accuracy is also an important numerical issue, partic-

ularly for continuous optimization problems. Algorithms should be robust
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against rounding errors which limit the accuracy of the solution. Examples
illustrating the effect of rounding errors can be found in Brent [6].

2.1.4. Ease of Use

The effort of preparing the input data and model formulation in order to
use a given algorithm should also be taken into consideration [4]. An algo-
rithm that needs extensive input data preparation, such as data sorting or
complicated data format conversion, is less desirable because such prepara-
tion can be a time consuming process. In general, users want optimization
software to be as simple as possible. Algorithms that are straightforward
to use are more attractive than those that are difficult to comprehend at
the developer or user level. Ease of understanding also leads to easier and
proper implementation which enhances result reproducibility. Hence, a
very important goal in algorithm and software development is that an
average expert or a non-expert alike should be able to grasp the ideas
underlying the algorithm without much difficulty.
From the practitioner’s point of view, the ideal algorithm is basically a

black box that will output the final solution without too much preparation
required from the user. Therefore algorithms that depend upon a large
number of externally set option parameters are – as a rule – less user
friendly. Observe also that the introduction of too many algorithm param-
eters (which may require pre-calibration or ‘‘tuning’’ for new problems)
indicates strong problem-dependency, and hence renders the algorithm less
useful. Again, this point implies nontrivial compromises between user-
friendliness and sophisticated implementations. A good compromise is
often to provide preset or default parameterizations which will work
acceptably well even for the inexperienced user, while advanced users can
have the option of overriding these settings.

2.2. GLOBAL OPTIMIZATION MODEL TYPES AND CLASSIFICATIONS

Global optimization problems are truly heterogeneous. As noted previ-
ously, GO models encompass all of the usual categories in mathematical
programming, including linear models as well as the broad nonlinear cate-
gory.
There is no universally accepted categorization for nonlinear problems.

As an example, Törn and �Zilinskas [52] classified global optimization prob-
lems as follows:

Type A: Unconstrained global optimization problems
(A1) Solvable problems
(A2) General unconstrained problems
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Type B: Constrained global optimization problems
(B1) Special form problems
(B2) General constrained problems.

This tentative classification is obviously rather simplified, and it can be
refined. A far more detailed GO problem classification can be found in
[20]. The electronically available articles [37, 38] also provide a concise, but
fairly detailed nomenclature of model-types, as well as a review of the most
frequently used solution approaches and software.
Törn et al. [51] attempted to categorize problems from a pragmatic solu-

tion point of view regarding the number of modes and the ease or difficulty
in finding these modes. They use the following categories:

(a) unimodal
(b) easy multimodal
(c) moderately difficult multimodal
(d) difficult multimodal problems.

The degree of difficulty is determined by the embeddedness of the global
minimum relative to the minimizers, and the probability of missing the
region of attraction of the global minimum in a stochastic search based
approach. Problems with isolated global solutions and with a smaller
chance of finding the region of attraction to the global minimum are right-
fully considered more difficult.
In the past decade there has been a very significant progress in GO method-

ology, but there are and will always remain models of extreme complexity. As
the tutorial [39] emphasizes, it is not difficult to construct GO test problems
which pose a tremendous challenge to any particular GO method, whether
today or tomorrow. Although many practical GO problems are less ‘‘intimi-
dating’’ than such purely mathematical constructions, practically motivated
models can also be very difficult. For instance, a few years ago Ratschek and
Rokne [41] analyzed a circuit design model described by a system of (seem-
ingly not too complicated) nonlinear equations in just nine variables. The ver-
ified solution of this model to a specific significant accuracy took a collective
work power of tens of workstations and several months of total runtime.
Recent advances in global optimization techniques and the increase of com-
puter power made it possible to solve the circuit design problem – as well as a
large variety of complex engineering design problems – in a reasonable
amount of time. Examples can be found in [1, 9, 16–18, 28, 35, 39, 42, 54].

2.3. TEST PROBLEMS

Perhaps the most comprehensive printed source of global optimization test
problems is Floudas et al. [16] (a significantly expanded version of [17]).
Floudas and Pardalos [15] classify GO test problems into four main categories:
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(i) iiquadratic programming problems
(ii) iquadratically constrained problems
(iii) general nonlinear programming problems
(iv) real-world application problems.

Note that the problem-class (i) is contained by (ii); the latter is contained by
(iii); while (iv) may contain elements from any of the classes above. The vol-
ume [16] classifies test problems into 14 (again, partly overlapping) categories
all of which are mathematically related. Examples of prominent model cate-
gories in [16] are quadratically constrained problems, mixed-integer nonlinear
models, semidefinite programming, and dynamic programming problems.
For several good GO test problem collections available on-line, see Mit-

telmann [29] and Neumaier [34]. New classes of test problems are also
being proposed regularly: these include, for instance, test models by Schoen
[48], Mathar and �Zilinskas [27], and several randomized problem-classes
discussed in Pintér [36].
Let us point out here the close theoretical connection between integer

programming (IP) and continuous GO models. As it is known, IP models
can be directly transformed into GO equivalents, since each disjunctive
binary relation can be represented by a reverse convex continuous con-
straint (consult, for instance [21, 36]). This fact implies that, at least in the-
ory, IP models may also serve to test GO strategies. For instance,
interested readers may consult [25] as a good collection of problems closely
related to the traveling salesperson model.
There is another significant issue to consider here: namely, the use of

standard academic tests vs. real-world problems. The eventual goal of glo-
bal optimization should include applicability to real-world problems which
can be massively nonlinear, complex, and high-dimensional, and/or have
an unusual structure. Hence, reporting results on a particular real-world
problem or a small class of such problems may not be too useful for the
purpose of comparison, unless the problem is of true significance, and the
test conditions and results can be directly reproduced. At the same time,
purely academic test problems are sometimes either a bit too simplistic or
have a rather ‘‘fabricated’’ structure, although some of these models may
well represent (possibly simplified) real problems.
To conclude this section, note that the selection of test problems in itself

poses a difficult philosophical question: which problem suites can be cho-
sen as the true benchmark that all GO algorithms should be tested against?
For related discussions, see e.g. [30, 34, 39].

2.4. REPORTING TEST RESULTS

Most GO test related works (available in the published literature) do not
report all types of merit measures mentioned earlier, but only a
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combination of some of these measures. This is probably due to the very
serious resource demands of properly detailed testing. Another natural
issue is scientific objectivity. Törn et al. [51] mention that comparisons of
algorithms in the literature are often not completely fair, due to some
(almost unavoidable) subjectivity and parameter tuning to the test suite
used. A frequently observed example is the selection of stopping criteria
that are chosen in light of the known or pre-set solution. Such a choice
would typically shed too favorable a light on the algorithm in question.
Table 1 lists criteria and other details that are often reported in the liter-

ature to indicate the performance of global optimization algorithms on test
problems. Typically, there exist some pointers available regarding the moti-
vation to select a particular test problem, or a class of problems. Test
problems are often chosen because they are pertinent to some real-world
applications. In other cases, they are used because comparable benchmark
results exist from other algorithms. The model functional form, dimension-
ality, and feasible region are commonly reported, whereas the numbers of
local and global minima may be unknown, especially in many practical
problems and in complex test problems, or simply omitted from the report.
Clearly, the best function value found is a very important measure.

There are many difficult problems, such as traveling salesperson problem
instances, various molecular architecture models, and over-determined sys-
tems of equations, in which the optimal solution could be unknown: in
such cases, the best function value found so far is of primary interest.

Table 1. Performance comparison aspects of GO algorithms

Aspects notes

1. Test problem formulation Practical motivation, or original reference

2. No. of variables/constraints Smaller, simpler models are often (much) easier

3. Feasible region Smaller region is often (but not always) easier

4. No. of local minima Fewer minima often make models easier, The case of

embedded global optimum is easier

5. No. of global minima Easier, if only one of these needs to be found; more

difficult, if several or all have to be found

6. Best function value found Closer to optimality is better

7. CPU time Faster is better

8. No. of function evaluations Fewer is better

9. Accuracy Higher is better

10. Average no. of iterations required per

replication (in multiple replications)

Fewer is better

11. No. of replications More is better

12. Success rate Higher the better

13. Tuning parameters Fewer is better, less sensitive is better

14. Stopping criteria May vary

15. Platform May vary

16. Additional comments Summary, recommendations can be included
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The CPU time and the actual number of model function evaluations
seem to be the other most frequently reported measures in the literature.
For a given hardware platform, one can compare the efficiency of various
algorithms by comparing CPU times used by these algorithms. Direct CPU
time comparisons are not recommended, when different platforms are used:
in such cases, one may use scaled time units, based upon certain bench-
mark evaluations, but this may lead to (unavoidable) biases.
The accuracy of an algorithm is usually pre-set internally, or set by its

user, via a list of options. A higher level of accuracy is generally preferable,
but there has not yet been a common agreement on the ideal level of accu-
racy that should be used as the benchmark. In practice, the level of accu-
racy is dictated by the actual model and data.
The average number of major iterations is less often reported. As dis-

cussed earlier, one of the reasons is that this measure is dependent on the
programming skills of the algorithm developer. Some algorithms are
designed to use a large number of iterations, but during each iteration the
objective function is evaluated only once, while other algorithms may
exploit many objective function evaluations per major iteration, but need a
lot fewer of such iterations. Practical applications often involve computa-
tionally expensive objective function calculations, which may dominate the
computational overhead in a larger number of iterations. Thus, the total
number of function evaluations is a widely accepted and relevant measure.
Note that given implementations of deterministic global optimization

methods are expected to produce identical (reproducible) results. However,
the success rate for deterministic methods is relevant, when some test set-
tings such as the starting point could affect the quality of the solution.
The number of replications and success rate pertain more directly to sto-

chastic global optimization (SGO) algorithms. Since SGO methods guaran-
tee finding the global optimum only in probability, their robustness needs
to be tested via properly chosen statistical tools. Note, however, that these
methods can also be equipped with fixed or variable random seed mecha-
nisms that enable (as an option) the generation of identical results. This
feature is implemented in many professional solver systems.
Most numerical optimization algorithms have a few parameters that

need to be ‘‘tuned’’ heuristically. Examples include the mutation rate in
genetic algorithms, or the cooling schedule in simulated annealing algo-
rithms. The stopping criteria used in one algorithm often differ from those
of another algorithm. For example, one can mention a pre-assigned con-
straint satisfaction or Karush–Kuhn–Tucker condition satisfaction accu-
racy. Other pragmatic numerical criteria may include the maximum
number of model function evaluations, the number of evaluations without
‘‘noticeable’’ improvement in objective function values, and/or a preset
maximum program execution time. These parameters are usually decided
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somewhat arbitrarily, making a fair comparison of algorithms more diffi-
cult.
A practical issue that adds to the complication of evaluating algorithms

is the variety of available computer hardware and software platforms. As
previously mentioned, program execution times are basically incomparable,
unless the algorithms are implemented on the same hardware platform with
the same configurations. This issue becomes even more complicated when
algorithms can utilize parallel processing on several platforms. Further dif-
ferences may appear even between identical and/or similar algorithm imple-
mentations when using different programming languages or compilers, not
to mention the added burden of user-friendly but resource-intensive pro-
gram interface features.
In many cases, the performance of algorithms is depicted graphically to

illustrate their progress or convergence rate as a function of iterations for
given test problems. For the SGO approach, the average and standard
deviation characteristics as well as the best and worst cases encountered
are also frequently reported when solving the same problem repeatedly.
Such information can be useful in the statistical analysis of SGO methods.
A more versatile procedure to directly compare algorithms was recently
proposed by Dolan and Moré [12]: their approach is applicable not only to
execution time, but also to other comparative measures discussed above.
Without going into details beyond the scope of this paper, observe that the

criteria listed are often (at least partially) conflicting. Consider, for instance,
the tradeoff between accuracy required and a pre-set maximum number of
objective function evaluations. In such cases, concepts and techniques used
in multi-objective optimization (specifically including the selection of non-
dominated, Pareto optimal algorithms for a given set of test problems) can
be brought to the subject. Such analysis can lead to insights related to the
strengths and weaknesses of optimization algorithms. Additional references
on reporting test results can be found on the web sites [29, 34].

3. Algorithm Implementations and Comparative Numerical Experiments

It is important to recognize the difference between an algorithm and its
actual software implementation. Although the latter is basically a machine-
readable form of the underlying algorithm, the software itself is not the
algorithm. The effectiveness of a software implementation may not directly
reflect the effectiveness of the corresponding algorithm, because the coding
skills of the developer can greatly affect the performance of the software.
However, in order to compare algorithms for a real-world setting, one
needs to compare both the algorithms and their implementations, as
opposed to the algorithms alone. Several important aspects of algorithm
comparison have been discussed in the previous section. Here we will focus
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on the issues arising from algorithm comparison through software. Part of
this section is based on the work by Reklaitis et al. [42].

3.1. A BRIEF HISTORY OF COMPARATIVE ASSESSMENTS IN CONSTRAINED OPTI-

MIZATION

In 1968, Colville [8] made a pioneering attempt at comparing the perfor-
mance of algorithms, by sending out eight test problems to developers of
30 nonlinear optimization codes. The participants were required to submit
the result of the ‘‘best effort’’ on each problem and the corresponding pro-
gram execution time. Characteristics of Colville’s set of test problems are
summarized in Table 2.
This work was a significant step towards establishing objective evalua-

tion and comparison criteria. Eason [13] observed, however, that Colville’s
study contains three major flaws. First, the execution times collected in the
study are not comparable because the effect caused by the difference in the
compilers and platforms running the algorithms was not removed. Second,
the participants could apply their codes as many times as they liked and
only the best results were reported. Hence, if an independent investigator
would like to apply the same code to the same problem, he or she may not
be able to reproduce the reported results. Third, no two participants
reported the same accuracy of their results since this aspect was not pre-
specified.
Eason and Fenton [14] later performed a comparative study of 20 opti-

mization codes using 13 test problems, which are summarized in Table 3.
Their study primarily focused on penalty-type methods and all of the com-
putations were performed on the same computer. The major inadequacies
of this study were due to (i) failure to include other powerful methods
available at the time and (ii) shortcomings in the difficulty of the problems.

Table 2. Colville [8] problem set (source: [42])

Problem name

and/or source

Number

of variables

Number of

inequality

constraints (I)

Number of

equality

constraints (E)

Total number

of constraints

(I+E)

Total number

of bounds on

variables

1. Shell 5 10 0 10 5

2. Shell 15 5 0 5 10

3. Mylander/Res.

Analysis Corp.

5 6 0 6 10

4. Wood/Westinghouse 4 0 0 0 8

5. Efroymson/Esso 6 4 0 4 0

6. Huard/Electricite

de France

6 0 4 4 12

7. Gauthier/IBM

France

16 0 8 8 32

8. Colville/IBM 3 14 0 14 6
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Another major comparative study of nonlinear programming (NLP)
methods was implemented by Sandgren [45, 46]. The experimental proce-
dure employed in the study consisted of the following steps:

1. Assembly of solver codes and test problems.
2. Elimination of some (seemingly inferior) codes using 14 preliminary

test problems.
3. Application of the remaining codes to the full suite of test problems.
4. Removal of the test problems on which fewer than 5 codes were suc-

cessful.
5. Aggregation of the test results.
6. Preparation of individual and composite utility curves.

The purpose of step 2 in the experimental procedure was to avoid the
possibility of wasted effort for codes that did not have the potential to
solve the full suite of the test problems. (Solution times were far more sig-
nificant than today, for the test models selected.) Sandgren was thus priori-
tizing reliability of the method over other measures of performance.
Sandgren’s test problem set included problems 2, 7, and 8 of the Colville
problem set, all 13 problems from the Eason and Fenton problem set, eight
problems from the Dembo problem set which is summarized in Table 4, a
welded beam problem, and six industrial design application problems.
Dembo’s test suite [11] contains geometric programming problems which
are a rather difficult class to solve by general NLP methods. After the
removal of several test problems (in step 4 of the procedure), there were

Table 3. Eason and Fenton problem set (source: [42])

Problem name

and/or source

Number

of variables

Number of

inequality

constraints (I)

Number of

equality

constraints (E)

Total number

of constraints

(I+E)

Total number

of bounds on

variables

1. Colville #1 5 10 0 10 5

2. Post office

parcel problem

3 2 0 2 6

3. Colville #3 5 6 0 6 10

4. Colville #4 4 0 0 0 8

5. Rosenbrock 2 0 0 0 4

6. Colville #5 6 0 4 4 12

7. Beightler/Journal

bearing

2 1 0 1 4

8. Siddall/Flywheel 3 2 0 2 6

9. Siddall/Chemical

reactor

3 9 0 9 4

10. Mischke /

Gear train

2 0 0 0 4

11. Mischke/CAM design 2 2 0 2 4

12. Eason/Mechanism

synthesis

4 0 0 0 8

13. Eason/Gear train 5 4 0 4 3
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only 23 problems left. A summary of the codes used in Sandgren’s study
can be found in [42, 45, 46]. A thoughtful step in the study was that all
print operations were removed from the basic iterative loop so that accu-
rate execution time of the algorithm itself can be obtained.
The program execution time was the main performance measure used in

Sandgren’s study. He ranked the codes based on the relative number of
problems solved within a series of specified time limits. The limits are based
on a fraction of the average time for all codes on each problem. Moreover,
the execution time to find the solution within a pre-specified accuracy for a
problem was normalized by dividing it by the average execution time on
that problem. This normalization allows direct comparison among algo-
rithms. A generic example of Sandgren’s ranking is shown in Table 5.
To read Table 5 , the second column from the left indicates that Code A

could solve 7 problems in 25% of the average execution time, then 13 prob-
lems in 50% of the average execution time in the next column, and so on.
Using the number of problems solved within a certain ratio of the average
execution time as the comparison basis, fast codes can be easily identified.
From the table, Codes A and B dominate by being consistently faster than
Codes C and D. However, Code A is faster than Code B at the 50% of the
average execution time level, while after the 75% level, Code B worked faster
than Code A. Similar comparisons can be performed between other codes.
A major computational study of NLP codes summarized here was per-

formed by Schittkowski [47]. His study includes 20 codes on 180 randomly
generated problems with predetermined characteristics and multiple start-
ing points. An important difference between the Schittkowski and Sand-
gren studies is that quadratic programming methods were also included in
Schittkowski’s work [42].

Table 4. Dembo problem set (source: [42])

Problem name

and/or source

Number of

variables

Number of

inequality

constraints (I )

Number of

equality

constraints (E )

Total number

of constraints

(I+E )

Total number

of bounds on

variables

1. Gibbs free energy 12 3 0 3 24

2. Colville #3 5 6 0 6 10

3. Alkylation process

model (Bracken and

McCormick)

7 14 0 14 14

4. Practor design

(Rijckaert)

8 4 0 4 16

5. Heat Exchanger

(Avriel)

8 6 0 6 16

6. Membrane Separation

(Dembo)

13 13 0 13 26

7. Membrane Separation

(Dembo)

16 19 0 19 32

8. Beck and Ecker 7 4 0 4 14
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The codes were evaluated based upon the following nine criteria: efficiency,
reliability, global convergence, ability to solve degenerate problems, ability
to solve ill-posed problems, ability to solve indefinite problems, sensitivity to
starting points, sensitivity to problem variations, and ease of use. Each code
was applied to all 180 test problems. The data were collected in the same
manner as in the Sandgren’s study. Schittkowski then weighed the nine crite-
ria according to Saaty’s priority theory [43, 44] as outlined by Lootsma [26].
Schittkowski’s weighting scheme is listed in Table 6. Using this weighting
scheme as the measures he arrived at a ranking of the codes analyzed.
Several criteria in Schittkowski’s weighting scheme have been mentioned

in the beginning of this paper. Others may adopt different weighting fac-
tors or schemes, but Schittkowski’s study does imply the need to consider
several measures of performance in a detailed comparative study. An inter-
esting observation from this work is that it supports the theory that the
reliability of a code may reflect coding skills more than the quality of the
algorithm itself [42].
Future computational comparison studies for global optimization algo-

rithms can use the aforementioned and similar experiences. Specifically, the
studies should consider multiple measures of performance, a comprehensive
choice of test problems, and a well-defined procedure to conduct the evalu-

Table 5. Number of problems solved at accuracy level e = 10)4 within a percentage of normalized

execution time

Codes Fraction of normalized execution time

0.25a 0.50 0.75 1.00 1.50 2.50

Code A 7 13 14 16 16 16

Code B 0 9 14 17 19 20

Code C 0 1 2 3 4 6

Code D 0 0 0 0 3 9
..
. ..

. ..
. ..

. ..
. ..

. ..
.

aTimes the average execution time.

Table 6. Schittkowski’s weighting scheme (source: [42])

Criteria Weights

1. Efficiency 0.32

2. Reliability 0.23

3. Global Convergence 0.08

4. Ability to solve degenerate problems 0.05

5. Ability to solve ill-posted problems 0.05

6. Ability to solve indefinite problems 0.03

7. Sensitivity to slight problem variations 0.03

8. Sensitivity to starting points 0.07

9. Ease of use 0.14
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ations. Note in this context that a large number of further test problems,
such as randomized systems of nonlinear equations, randomly generated
clustering problem-instances, as well as detailed case studies, are discussed
in [36]. For an extensive collection of other practically motivated tests and
case studies, the readers may consult, for instance [1, 5, 9, 10, 17–19, 24,
28, 31, 32].

4. An Illustrative Comparison

In the companion paper [1], numerical results are presented comparing sev-
eral different algorithms. In this paper, we present sample results to high-
light the difficulty in comparing performance.
Consider three algorithm variations that have been tested on a specific

global maximization problem. Figure 1 illustrates the best objective func-
tion value found by the kth iteration, averaged over five replications. By
assumption, each replication started with a different random starting point
and random seed (for the pseudo-random number generator), and the five
replications were all considered successful, meaning that they achieved a
point within the specified target set within 1000 function evaluations.
From Figure 1, variation A makes the best improvement early in the run,

until approximately the 190th iteration when B starts to outperform A. After
this, the progress of variation A slows down and eventually it performs worst
(as shown up to 1000 iteration steps). Line 1 indicates where variation B
passes variation A and similarly line 2 indicates where C passes A. As
depicted in the figure, after about the 450th iteration, variations B and C con-
verge at about the same rate, so it may be concluded that B dominates C.
Figure 1 reveals two important aspects in numerical comparison of algo-

rithms. First, it emphasizes the importance of the stopping criteria. Often
times algorithms are set to stop after a certain number of iterations. This
number of iterations is usually arbitrarily decided by the user. In this
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Figure 1. Illustrative performance comparison of three SGO algorithm variations.
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example, if the stopping criterion was 100 iterations, we would conclude
that variation A performed the best; however, if it was 400, then we would
favor variation B, and at 1000, it is difficult to distinguish the performance
of variations B and C.
Second, the figure stresses the consequence of the selection of the target

level set. If the target set in the above comparison must yield an average
objective function value of )2000 or better, then variation A would per-
form the best because it makes the fastest progress in the beginning. How-
ever if it was )100 or better, then variation A would be considered a
failure because it never achieves )100 during the (again, arbitrary number
of) 1000 iterations. Thus it is important to report the whole graph to allow
readers to make their own conclusions about the performance of the algo-
rithms being compared.

5. Conclusions

Measures of computational performance for global optimization algo-
rithms and software have been discussed. We propose the use of several
such measures in comparing different methods and address some of the dif-
ficulties of conducting a fair comparison. Highlights of earlier studies
restricted to constrained nonlinear programming have been summarized,
which may be used to guide future studies on GO algorithms and their
software implementations.
In the forthcoming second part of this paper we will conduct a system-

atic comparative study of several global optimization methods, based on a
collection of test functions.
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